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Abstract: In order to study the feature difference 

between distracted driving and normal driving in 

frequency domain, this paper conducts real-vehicle 

experiments under cognitive distracted state to obtain 

driving operation parameters and vehicle operating state 

parameters under normal driving and distracted driving. 

The parameter is subject to wavelet packet decomposition 

to obtain the energy value of each parameter in different 

frequency ranges under different driving states. The 

support vector machine algorithm is used to establish the 

classification model, and the time domain feature 

parameters, namely the mean and standard deviation of 

different parameters, and the frequency domain feature 

parameters, namely the high and low frequency energy 

values of the wavelet packet decomposition of different 

parameters, are used as feature inputs. The model 

recognition rate of normal driving and cognitively 

distracted driving are analyzed, and the time domain 

recognition results are comparatively analyzed against 

frequency domain. The analysis results show that the 

frequency domain analysis method is more accurate than 

the time domain analysis method in identifying the two 

driving states. The frequency domain analysis method has 

an accuracy rate of 83.3% and 87.5% in identifying 

normal driving and distracted driving, respectively. 
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1. Introduction 

In the driving process, the driver plays a leading role. 

Driver features are the fundamental factor that endangers 

traffic safety [1]. NHTSA pointed out that distracted 

driving is an important cause of fatalities and injuries in 

traffic accidents [2]. 

Erwin R. Boer et al. summarized driving distraction 

into two categories: visual distraction and cognitive 

distraction [3]. Kashevnik et al classified driving 

distraction into three categories as manual distraction, 

visual distraction, and cognitive distraction [4]. Because 

cognitive distraction does not present the driver's head 

movement features shown by visual distraction, the 

analysis and extraction of parameters supporting effective 

detection of cognitively distracted driving carries great 

significance for the recognition, early warning and 

intervention of cognitive distracted driving. 

Due to the existence of safety risks, the research on 

distracted driving is mostly based on driving simulators 

[5–7], and the form of questionnaires [8], [9]. Only a few 

studies choose the natural driving experiment [1]. This 

paper intends to adopt the method of real vehicle 

experiment to design the driving distraction secondary 

task and access driving behavior data in the real traffic 

environment. 

As for the stimuli that trigger distraction, studies 

involved in HMI operating [10], phone using [11], [12], 

and in-vehicle activities like texting and eating [13] are 

made. In this paper, digital memory method is taken to 

design an 11-digit phone number memory task to 

simulate the distracted state of cognitive driving. 

Previous studies were mostly based on the 

time-domain perspective to explore the differences 

between the driver’s operating behavior parameters and 

vehicle operating parameters in distracted driving 

conditions over time, data like drivers’ gaze activities 

characteristics [14], face poses [11], the lateral and 

longitudinal measures [6], [7], [13], [15–17] of vehicle 

performance are used to discriminate the distracted 

driving state. However, the change features of parameter 

data in the frequency domain are ignored. This paper 

adopts wavelet packet time-frequency analysis method, 

transforms the time-domain parameters into the 

frequency domain, explores the frequency-domain 

features of the parameters under cognitively distracted 

driving state, and compares them with the time-domain 

analysis method to verify the effectiveness of the 

frequency-domain analysis method. 

2. Real Vehicle Experiment 

2.1. Driving Distraction Secondary Task 

Ullsperger believes that the P300 wave in the human 

brain is a parameter that characterizes the size of a 

person's cognitive load. By applying the task of number 
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string memorization to the subjects, Ullsperger found that 

as the number string grows, the amplitude of the P300 

wave also increases. The experimental results are 

consistent with the subject's subjective observations. 

Based on Ullsperger's experimental results, this paper 

designs a cognitive distraction secondary task of 

memorizing mobile phone numbers [18]. 

During the actual vehicle experiment, the experimental 

staff in the co-pilot verbally proposed the 11-digit mobile 

phone number memory secondary task to the driver. After 

the experiment staff finished the dictation, the driver 

repeated the 11-digit mobile phone number. The subjects 

had two opportunities to answer the question. Afterwards, 

regardless of whether the answer is correct or not, 

proceed to the next question. 

2.2. Experimental Conditions 

This paper adopts the method of real-vehicle driving 

experiment, chooses the straight section of the 

expressway with simple environment and low workload 

requirement for the driver, so it is appropriate to carry out 

the distracted driving experiment. 

After research, it is determined that the experimental 

section is a 4km straight section of Xitai Road in Xi’an. 

As shown in Figure 1, the speed limit of this section is 

80km/h and the traffic flow is 700veh/h. 

The experimental vehicle is a Volkswagen Touran 

experimental platform vehicle equipped with a gyroscope, 

VBOX 3i host, GPS, steering wheel sensor and video 

acquisition equipment, as shown in Figure 2, which 

acquires equipment record data through the CAN 

protocol. 

This paper selects five parameters collected by the 

equipment for research, including the vehicle's steering 

wheel angle, steering wheel acceleration, yaw rate, lateral 

acceleration, and longitudinal acceleration. The steering 

wheel is directly controlled by the driver, so the steering 

wheel angle and the steering wheel angular velocity can 

more directly reflect the driver's operating behavior; 

while the yaw rate, longitudinal acceleration, and lateral 

acceleration reflect the running state of the vehicle. The 

experimental equipment is shown in Table 1. 

 
Figure 1. Simulation diagram of experimental route 

 
Figure 2. Multi-sensor platform vehicle 

Due to the high safety risks of distracted driving 

experiments, this study only recruited 6 skilled drivers, 

aged between 30-50 years old, with more than 10 years’ 

driving experience, who have no traffic accidents in the 

past 3 years. Before the experiment, inform the test 

drivers of the safety risks of the experiment, let them fill 

in the informed consent form, and purchase insurance for 

each test driver. 

Table 1. Experimental equipment 

Equipment name Function Sampling 

frequency (HZ) 

video capture 

system 

real-time 

monitoring of the 

traffic environment 

and driver's driving 

behavior in 360  

of the experimental 

vehicle 

24 

imu02 gyroscope acquire the 

three-axis motion 

state parameters of 

the experimental 

vehicle (lateral and 

longitudinal 

acceleration, yaw 

rate) 

20 

vbox3i gps  access speed, 

latitude and 

longitude 

information of the 

experimental 

vehicle 

100 

steering wheel 

sensor 

collect the steering 

wheel angle and the 

steering wheel 

angular velocity 

parameters of the 

experimental 

vehicle 

20 

2.3. Experimental Process 

Before the formal start of the experiment, a 

pre-experiment was carried out, allowing the test driver 

to drive normally according to his usual driving habits to 

adapt to the experimental vehicle and the experimental 
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road section. After the start of the formal experiment, in 

order to reduce the driver’s workload, the vehicle was 

turned on in a cruise mode with a speed of 50km/h. 

Drivers were required to perform normal driving 

experiments (comparative experiments) and cognitively 

distracted driving experiments on the experimental 

straight line section. Where, the cognitive distraction 

secondary task was applied on the straight line section 

shown in Figure 1, which lasted about 100s. Normal 

driving operations were carried out on the straight line 

section at bending and returning. 

3. Frequency Domain Difference Analysis Based on 

Wavelet Packet Algorithm 

The experiment finally collected the experimental 

parameters of the driver in normal driving and 

cognitively distracted driving. The wavelet packet 

analysis method is used to decompose the five parameters 

of steering wheel angle, steering wheel angular velocity, 

lateral acceleration, longitudinal acceleration and yaw 

rate to obtain the parameter components in the high and 

low frequency bands. The energy value of the same 

parameter in the high and low frequency bands was 

compared under different driving conditions to obtain the 

difference in frequency domain between normal driving 

and distracted driving. 

3.1. Wavelet Packet Analysis Method 

The wavelet packet analysis method is a 

time-frequency analysis method. Its principle is to 

describe the original signal using the wavelet basis 

function. By changing the scale parameter of the wavelet 

function, the short-term and high-frequency data are 

simulated separately, and the translation parameter of the 

wavelet function is changed to make it move in the entire 

signal time axis so that the entire signal can be measured. 

Through this wavelet transformation process, the 

similarity coefficient between the original signal and the 

wavelet packet function is obtained, namely, the wavelet 

packet coefficient. The original signal can be 

reconstructed through the wavelet packet coefficient. 

Perform a layer of wavelet packet decomposition on 

the original signal, as shown in Figure 3. Obtain the 

high-frequency component and low-frequency 

component of the original signal, that is, the wavelet 

packet coefficient of the high-frequency component and 

the wavelet packet coefficient of the low-frequency 

component of the signal. The high frequency and low 

frequency components of the original signal can be 

obtained through the wavelet packet coefficient 

reconstruction, that is, the original signal is divided into a 

high frequency band and a low frequency band, and the 

result is represented by wavelet coefficients. If the 

sampling frequency of a known signal is fs, let 𝑓 =  
1

2
𝑓𝑠, 

then the frequencies of the frequency band represented by 

low and high frequencies are [0,
1

2
𝑓] and [

1

2
𝑓, 𝑓] 

respectively. 

 
Figure 3. Wavelet analysis data process  

Decompose the operating parameters of the driver and 

the operating parameters of the vehicle in the normal 

driving state and the cognitively distracted driving state 

to obtain the signal components of each parameter in the 

high frequency band and the low frequency band under 

the two driving states. That is, the changes in the high 

and low frequency signal content of the same parameter 

can be analyzed under the two driving states. If the high 

and low frequency energy values of the same parameter 

produce significant differences under different driving 

states, it means that this parameter can be used as a 

feature parameter to characterize distracted driving. 

Based on the matlab platform, single-layer wavelet 

packet decomposition is performed on the parameters 

collected in cognitively distracted driving and normal 

driving through the wpdec function, each node is 

reconstructed through wprcoef to obtain the specific 

energy value of each node. An increase in high frequency 

energy indicates an increase in short-term and great 

changes in the parameter. For example, if the steering 

wheel is turned sharply in an emergency, an increase in 

low frequency energy indicates an increase in small 

changes in the parameter, such as fine-tuning of the 

steering wheel at intervals. The frequency domain feature 

extraction and recognition process is shown in Figure 4. 

 
Figure 4. Frequency domain feature parameter extraction and 

driving state recognition process 
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3.2. Differences of Different Driving States in the 

Frequency Domain 

In this paper, each parameter of 10s operating data of 

the driver under normal driving and cognitively distracted 

operating states is separately decomposed by wavelet 

packet single layer, and the node coefficients are 

reconstructed to obtain the energy distribution of each 

parameter at low and high frequencies. Analyze the 

energy distribution difference of each parameter at low 

and high frequency under the two operating states. 

After wavelet packet decomposition and node 

reconstruction of the steering wheel angle, steering wheel 

angular velocity, yaw rate, longitudinal acceleration and 

lateral acceleration data, the energy value obtained is 

indicated by a box-and-whisker diagram, and the results 

shown in Figures 4, 5, and 6 are obtained. Since the 

sampling frequency of the parameters studied in this 

paper are all 20 Hz, node 1 represents the frequency band 

of the lower frequency range, that is, [0,5]Hz, node 2 

represents the frequency band of the higher frequency 

range, i.e. [5,10]Hz. 

It can be seen from Figure 5 that at node 1, 

high-frequency energy value of the steering wheel angle 

under cognitively distracted driving has larger 

distribution range than the high-frequency energy value 

of the steering wheel angle under normal driving. It can 

be considered that in the cognitively distracted driving 

state, there is more instantaneous and great change in 

steering wheel. For its reason, under cognitively 

distracted state, the driver has more emergency 

operations after realizing that the vehicle has deviated 

from the original driving route. The low-frequency 

energy value of the lateral acceleration can be used as a 

frequency domain feature parameter for identifying the 

cognitively distracted driving state. 

 
Figure 5. Energy box and whisker diagram of 1 layer wavelet 

packet decomposition of the steering wheel angle 

Similarly, it can be seen from Figure 6 that the high 

and low frequency energy values of the steering wheel 

angular velocity in the cognitively distracted state are 

greater than the energy values in the corresponding 

normal driving state, which indicates that there are more 

instantaneous great change and intermittent fine-tuning of 

the steering wheel angular velocity in the cognitively 

distracted driving state. 

 
Figure 6. Energy box and whisker diagram of 1 layer wavelet 

packet decomposition of the steering wheel angular velocity 

Figure 7 shows that the low-frequency energy value of 

lateral acceleration in cognitively distracted state 

increases relative to normal driving, which indicates that 

the vehicle's lateral control ability deteriorates in 

cognitively distracted state, and the vehicle has a 

tendency to intermittently deviate from the original 

driving trajectory, so lateral movement of the vehicle 

needs to be fine-tuned. 

 
Figure 7. Energy box and whisker diagram of 1 layer wavelet 

packet decomposition of lateral acceleration 

For the yaw rate and longitudinal acceleration, the 

wavelet packet decomposition energy shows that the high 

and low frequency energy values have a serious overlap 

between the normal driving state and the distracted 

driving state, which cannot be used as a feature parameter 

to identify the cognitively distracted state. 

4. Cognitive Distraction State Recognition Model 

Based on Support Vector Machine 

Support vector machine [5], [13], random forest 

classifier [10], [13], [16], linear logistic regression [10], 

[13], convolution neural network [19], [20] are the 

commonly used driving distraction recognition algorithm. 

Since this paper aims to verify the effectiveness of 

frequency domain analysis method, there are no high 

requirements for algorithms. Therefore, based on the 

Matlab2016a platform, this study invokes the support 
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vector machine toolkit, uses fitcsvm function to establish 

a cognitive distraction state recognition model based on 

time-domain feature parameters and frequency-domain 

feature parameters. 

Input the low-frequency energy value of the steering 

wheel angle, the high-low-frequency energy value of the 

steering wheel angular velocity, and the low-frequency 

energy value of the lateral acceleration as frequency 

domain feature parameters into the support vector 

machine model, and the final model obtained by different 

parameter combinations has different accuracy in 

recognizing cognitively distracted driving. Finally, it is 

shown that the best recognition effect is obtained when 

the high and low frequency energy value of the steering 

wheel angular velocity are used as the model input. The 

accuracy in identifying normal driving is 83.3%, and the 

accuracy in identifying cognitively distracted driving is 

87.5%. The recognition result is shown in Figure 8. 

 
Figure 8. Support vector machine model classification results 

The mean and variance of the selected steering wheel 

angle, steering wheel angular velocity, yaw rate, lateral 

acceleration, and longitudinal acceleration within 10s are 

input to the support vector machine model as 

time-domain feature parameters. The result shows that 

the model accuracy in identifying normal driving is 75%. 

The accuracy rate for cognitively distracted driving is 

79.2%, and the maximum recognition rate is obtained 

when all the mean and variance of the five parameters are 

used as the model input. The time domain feature 

parameters are shown in Table 2 and Table 3. 

Table 2. Time domain feature parameters under normal driving 

 No. 1 2 3 … 50 

steering wheel 

angle (°) 

mean 2.32 2.27 2.13 … 4.08 

var. 6.19 7.17 5.44 … 1.28 

steering wheel 

angular 

velocity (°/s) 

mean 0.36 0.67 0.29 … -0.35 

var. 20.0 40.6 7.63 … 8.57 

yaw rate (°/s) mean 0.02 0.02 0.02 … 0.01 

var. 2e-4 2e-4 2e-4 … 3e-4 

lateral 

acceleration 

(m/s2) 

mean 7e-3 0.03 0.02 … 0.01 

var. 2e-4 1e-4 1e-4 … 2e-4 

longitudinal 

acceleration 

(m/s2) 

mean 0.02 0.02 0.01 … 0.01 

var. 3e-4 2e-4 2e-4 … 3e-4 

Table 3. Time domain feature parameters under cognitive 

distraction 

 No. 1 2 3 … 50 

steering wheel 

angle (°) 

mean 1.29 2.19 2.04 … 2.78 

var. 8.38 4.31 5.91 … 3.98 

steering wheel 

angular 

velocity (°/s) 

mean 0.32 0.28 0.14 … -0.53 

var. 36.4 29.5 24.8 … 42.4 

yaw rate (°/s) mean 0.02 0.02 0.02 … 0.01 

var. 2e-4 3e-4 3e-4 … 4e-4 

lateral 

acceleration 

(m/s2) 

mean 0.04 0.02 0.02 … 0.04 

var. 1e-4 1e-4 2e-4 … 1e-4 

longitudinal 

acceleration 

(m/s2) 

mean 0.02 0.02 0.02 … 0.01 

var. 3e-4 3e-4 3e-4 … 4e-4 

5. Conclusion 

(1) The frequency domain analysis result of wavelet 

packet decomposition of the experimental parameters 

shows that the high-frequency energy value of the 

steering wheel angle parameter during cognitively 

distracted driving is generally greater than the 

high-frequency energy value of the steering wheel angle 

in the normal driving state, the high and low frequency 

energy values of the steering wheel angular velocity are 

all greater than the corresponding high and low frequency 

energy value under normal driving state, and the low 

frequency energy value of lateral acceleration is greater 

than the low frequency energy value under normal 

driving state in overall. 

(2) This paper uses the support vector machine 

algorithm. When the model input is the time domain 

feature parameter, that is, when the mean and variance of 

the five parameters in the two driving states are used as 

input, the algorithm has accuracy rates of 75% and 79.2% 

respectively in identifying normal driving state and 

cognitively distracted driving state. When the model 

input is the frequency domain feature parameters, the 

energy values of the high and low frequency bands after 

the first layer decomposition of the wavelet packet under 

the two driving states are used as the input, and the 

accuracy rates in identifying normal driving and 

cognitively distracted driving state are 83.3% and 87.5%, 

respectively. 

(3) This paper uses 10s as a unit to study the difference 

between normal driving and cognitively distracted 

driving behavior. Distracted driving often occurs in a 

shorter period of time. Therefore, a collection device with 

a higher collection frequency can be used later to shorten 

the research time unit. 
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